
Group 605:
PRESENTATION
AREAS

<p> Justin, Christa, Omar,
Mohamed </p>

<p> A presentation area allows for real-time dynamic
collaboration and flexibility to share more complex
and visual information with each other </p>

Why a Presentation
Area?

Presentation Area Features

Only host can start the
screensharing feature
Host generates a link from
Screenleap.com, link used
when creating the area
Participants view host's
screen broadcasted via
Screenleap's API

Screensharing

The Screenshare modal
powered by Screenleap's API

The whiteboard modal displays a collaborative drawable canvas with various
brush colors and sizes. Changes to the whiteboard are saved to the backend
and reflected to all presentation participants.

Collaborative Whiteboard

Tech Stack & Design
PresentationArea is an extension of the Interactable area interface
PresentationArea represented as an 'object' in tilemap, each
constructed + rendered through Phaser
All frontend components rendered + updated through Chakra UI and
React Hooks. The presentation area's UI handled via:

Screenleap API (screenshare)
React Canvas Draw API (whiteboard)
LZ-String API (string compression for backend)
Chakra UI (modal to display features above and other general UI
features)

Updates to the presentation trigger calls to the backend to sync changes
to all clients. Backend emits interactable updates to listeners in the
frontend, which re-renders for all clients via hooks.

Major Challenges
Screenshare Whiteboard Changes in

ScopeHow to make a 'live'
whiteboard where
changes are seen
across every client?

mouseup() saves
canvas state in
drawing string
Compress drawing
string, send to
backend
Backend interactable
update -> clients,
clients decompress
and load canvas
state

1.

2.

3.

Attempt to use native
browser screensharing
API to sync with
existing Twilio API

Difficult to extend
Twilio code, time
consuming

Quick switch to
backup plan:
integrate screenshare
with the help of
third-party API
(Screenleap)

Setbacks took up
time, especially
switching to
backup plans
Forgo couple
optional/desirable
features such as
integrated chat
and emote
reactions, but add
some QoL such as
social bar for
presentations

Testing

Team Member Contributions

Justin

Justin &
Christa

Backend Interface
Design

Everyone

Frontend Interface
Design

UI Design

Screensharing
Frontend + Backend

Christa Justin

Omar &
Mohamed

Whiteboard
Frontend + Backend

https://spring-23-team-
605.netlify.app/

Live Demonstration

THANK
YOU!
Please ask if you have any questions!

CREDITS.
Presentation Template: SlidesMania
Fonts used in this presentation: Roboto Mono and Roboto Bold

https://slidesmania.com/

The screenshare modal powered by
Screenleap API

CS4530 Final Project: Presentation Areas
Group 605: Justin, Christa, Omar, Mohamed

Demo and Source
Our public demo site is available at: https://spring-23-team-605.netlify.app/

The source repository is available at: https://github.com/neu-cs4530/spring-23-team-
605

About Our Feature
Covey.Town tailors to a professional audience. We notice that there is room for
improvement when interacting with others in a professional and social environment, and
having only a camera and microphone may not be sufficient. Thus, it makes sense if there
is some method for presenting, such that a speaker can have a visual aid when hosting a
meeting.

Our group developed a new feature that gives clients access to additional tools when
interacting with others: Presentation Areas. Presentation Areas are specific interactable
areas on the map that users can enter. The first user to interact with the presentation
area is the host; subsequent users who enter are participants.

Hosts may start screensharing to participants. In addition, all members in a presentation
area may draw on a collaborative whiteboard canvas. The addition of a presentation
area allows for real-time dynamic collaboration and flexibility to share more complex and
visual information with each other.

An example of a
presentation being held
in the Presentation Hall.
Members of the
presentation can see
the title and member
roles (host or
participant) on the
social bar to the right.

The whiteboard modal displays a collaborative
drawable canvas with various brush colors and

sizes. Changes to the whiteboard are saved to the
backend and reflected to all presentation

participants.

Technology Stack & Design
We implemented the presentation area as an extension
to the existing interactable interface. A presentation
area is represented as an 'object' in the town's tilemap,
constructed and rendered when the map loads through
Phaser.

Our continuous integration pipeline runs an automated
test suite on the frontend and backend components,
and then deploys the site using Heroku and Netlify.

All frontend components are rendered and updated
through Chakra UI elements and React hooks, along
with third-party APIs from Screenleap and React
Canvas Draw. Updates to the presentation title,
host/participants, screenshare link, and whiteboard
trigger calls to the backend to sync changes to all
clients. The backend emits interactable updates to
listeners in the frontend, which re-renders for all
clients via hooks.

Future Work
Our current implementation contains
multiple opportunities for extension and
improvement. A presentation allows for
a vast array of media tools beyond
video, voice, screenshare, and
whiteboarding. Future work on this area
could include text chat, reactions via
emotes, and recording.

Future work to improve existing features
in the presentation area might consider a
more comprehensive set of privileges for
hosts to manage their presentation, in
particular management of participant
privileges (add, kick, allow feature, mute).

Finally, there may be native solutions to
screensharing. Our group was able to
create a screenshare stream without the
use of a third-party API but struggled to
broadcast this stream information to all
clients.

